CS335 Introduction to Al

Constraint Satisfaction Problems (CSP)

Francisco lacobelli

Department of Computer Science
Northeastern lllinois University

March 19, 2024

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024

Constraint Satisfaction Probelm

Example

"“@":" (

. h
TR
Risiralla e

@ Color each region either red,green or blue
@ No adjacent region can have the same color

f-iacobelli@neiu.edu (@neiu.edu)

March 19, 2024

Constraint Satisfaction Problems

CSPs

@ So far, states evaluated by heuristics and goal
@ CSP = factored representation of state

o set of variables with a value
o allows for more efficient algorithms
o We want to find any solution or that there’s none

f-iacobelli@neiu.edu (@neiu.edu)

March 19, 2024

CSPs

Formulation

@ X, a set of variables, {Xi,..., Xy}
@ D, a set of domains for each X. {Dy,..., Dy}
@ C, a set of constraints

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024 4/30

CSPs

Formulation

@ X, a set of variables, {Xi,..., Xy}

@ D, a set of domains for each X. {Dy,...

o Di={wy,...,vy}for X;
@ C, a set of constraints
o C; =< scope, rel >

’ Dn}

f-iacobelli@neiu.edu (@neiu.edu)

March 19, 2024

5/30

Constraint Satisfaction Probelm
Map Coloring

Northern
Territory

Western
Australia

South
Australia

Qe @‘@

Victoria

Tasmania @

@ Color each region either red,green or blue
@ No adjacent region can have the same color

@ X = {SA NSW,NT,Q, WA, V, T}
@ D = {red, blue, green} for each X; € X}
C = {{(vX;, X;such that X; touches X;), (Color(X;) # Color(X;)))}

f-iacobelli@neiu.edu (@neiu.edu)

March 19, 2024

6/30

Constraint Satisfaction Problem

From Math to Pseudo Code

Q@ X ={SANSW,NT,Q WAV, T}
@ D = {red, blue, green} for each X; € X}
© C = {((vX;, Xjsuch that X; touches X;),(Color(X;) # Color(X;)))}

For each item ask: Do the elements of the set imply an action?

If no, then they are simple 1ists. Determine the types of the
elements.

If yes, then, for each action, how many parameters are needed? of
what types?

Then ask: does this item modify any previous data? if so, rethink the
data type.

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024 7/30

Constraint Satisfaction Problem

From Math to Pseudo Code
g X = {SA, NSW, NT, Q, WA, V, T}

D = {red, blue, green} for each X; € X}
C = {{(VX;, X;jsuch that X; touches X;), (Color(X;) # Color(X;)))}

The first one seems like a list of st rings.

X = ['SA’,'NSW’,’NT’,’Q’,’WA’,’V’,'T’J

Item #2 seems to be a 1ist, but it affects the item #1. Each element has its possible colors.

Let’s change X to a structure that associates provinces with colors. Maybe:

// define the object
object State (name):
current_color=""'
possible_colors = [’'red’,’blue’,’green’]
// instantiate elements of type ’State’
SA = State(’SA’)
NSW = State ('NSW’)
etc.
// Re—-create our initial list.
X = [SA,NSW,NT,Q, ...etc.]

f-iacobelli@neiu.edu (@neiu.edu)

March 19, 2024

Constraint Satisfaction Problems

From Math to pseudocode

X = {SA,NSW,NT, Q, WA, V, T}
D = {red, blue, green} for each X; € X}
e C = {{(VX;, Xjsuch that X; touches X;), (Color(X;) # Color(X;)))}

Item #3 is a set of actions that check that two provinces that are adjacent do not have the same colors.

function cl(x1,x2) return boolean
if x1 touches x2 then
return xl.current_color is not x2.current_color
return True

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024

CSPs

Formulating Problems Example

Scheduling Classes

Can you formulate it in terms of variables, domains and constraints?
e X =7

e D=2
e C="

f-iacobelli@neiu.edu (@neiu.edu) Al March 19, 2024 10/30

CSPs
Scheduling Classes

Can you formulate it in terms of variables, domains and constraints?
@ X = {CS235,CS355,CS101, etc.}
@ D = {Mon9am, Mon11am, Mon1pm...Fridpm, Fri6pm}
e C=
e Vi, jif x;, x; are co-requisites, then Ti # Tj

f-iacobelli@neiu.edu (@neiu.edu) Al March 19, 2024 11/30

1 2 3 4 5 6 7 8 9
A 3 2 6
B|9 5 1
c 118 614
D 81 219
El7 8
F 6|7 g2
e 216 5
H|8 2 3 9
I 5 1 3

Constraint kind: AlIDiff
27 AllDiffs

f-iacobelli@neiu.edu (@neiu.edu) Al March 19, 2024 12/30

CSPs
Cryptarithmetic Puzzles

TwWO
+ T WO

FOUR

Constraints:

e AIDiff(F, T,U, W,R, O)

@ O0O+0=R+10 x C4

[+ C1—|—W—|—W:U+10><Cg
@ C,+T+T=0+10x C5
o C3:F

f-iacobelli@neiu.edu (@neiu.edu) Al March 19, 2024 13/30

CSPs Formally
Kinds of Constraints

@ Unary: Involve a single variable (SA # green)
@ Binary: Involve a pair of variables (SA # WA)
@ Higher Order: Involve 3 or more (Cryptarithmetic’s)

f-iacobelli@neiu.edu (@neiu.edu) Al March 19, 2024 14/30

Solving CSPs
Search:Depth Limited

@ CSP with n variables with domain size d
@ Branching factor at top = nd
@ Atnextlevel: (n—1)d

@ In the end n!'d"” leaves. But only d" possible complete
assignments

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024 15/30

Solving CSPs
Backtracking

@ Variable assignments are commutative:
(WA =red = NT = green) <= (NT = green = WA = red)

@ Only need to consider assignments to a single variable at each
node

@ Backtracks when variable has no legal value
@ Can solve n-queens for n ~ 25

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024 16/30

Solving CSPs

Backtracking

function BacktrackingSearch (csp)
return Backtrack ({},csp) //returns solution or failure

function Backtrack (assignment, csp)
if assignment is complete return assignment
u_var=SelectUnassignedVariable (csp)
for each value in OrderDomainValues (u_var,assignment, csp) do
if isConsistent (value, assignment)
add {u_var=value} to assignment
inferences = Inference (csp,u_var,value) //maybe with F.C.
if inferences!=failure
add inferences to assignment
result = Backtrack (assignment, csp)
if result != failure then
return result
remove {u_var=value} and inferences from assignment
return failure

f-iacobelli@neiu.edu (@neiu.edu) Al March 19, 2024

17/30

Backtracking

Example (from Marc Erich Latoshik)

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024 18/30

Backtracking
Example

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024 19/30

Backtracking
Example

March 19, 2024 20/30

Backtracking
Example

March 19, 2024 21/30

Backtracking

Heuristics and Considerations

@ Really important how to choose the next variable:
@ Minimum Remaining Values (MRV) heuristic (var w/fewest legal
values)
o Degree Heuristics (var involved in most constraints)
o Least constraining value (prefers var flexibility for the future)
@ Check for constraint consistency; i.e. Inference with AC-3 (arc
consistency)

f-iacobelli@neiu.edu (@neiu.edu) Al March 19, 2024 22/30

Inference in CSPs

Forward Checking

Can be used to check consistency (inferences), or with minor
modifications, it can be the basis to solve small CSPs.

function ForwardChecking (csp)
var

//returns a new domain for each

for each variable X in csp do
for each unassigned variable Y connected to X do
for each value d in Domain (Y)
if d is inconsistent with Value (X)
Domain (Y)={Domain (Y)-d}
return csp //whith modified domains

If we randomly assign X a value from the Domain(X) after each iteration, we can have a brute force CSP.

f-iacobelli@neiu.edu (@neiu.edu) Al March 19, 2024 23/30

Inference in CSP
Example

|

(N

®

WA | NT Q NSW | V SA T
Domains | RGB | RGB | RGB | RGB | RGB | RGB | RGB

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024 24/30

Inference in CSP
Example

|

N

od]

WA | NT Q NSW | V SA T
Domains | RGB | RGB | RGB | RGB | RGB | RGB | RGB

After WA ® GB RGB | RGB | RGB | GB RGB

No possible assignments for SA, we try other assignments.

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024 24/30

Inference in CSP
Example

|

N

od]

WA | NT Q NSW | V SA T
Domains | RGB | RGB | RGB | RGB | RGB | RGB | RGB

AterwA | ® | GB |ReB|RGB |RGB| GB | RGB
amterao|® |B | © |re |RreB|B | RCB

No possible assignments for SA, we try other assignments.

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024 24/30

Inference in CSP
Example

|

N

od]

WA | NT Q NSW | V SA T
Domains | RGB | RGB | RGB | RGB | RGB | RGB | RGB

AterwA | ® | GB |ReB|RGB |RGB| GB | RGB
amterao|® |B | © |re |RreB|B | RCB

amterv | ® |B | © |R RGB

No possible assignments for SA, we try other assignments.

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024 24/30

Local Search in CSPs

Heuristics

@ Local search use a complete state formulation
@ Initial assignment
@ Change one variable at a time using heuristics

f-iacobelli@neiu.edu (@neiu.edu) Al March 19, 2024 25/30

Local Search in CSPs

Min-Conflicts

function MinConflicts (csp,max_steps)
// csp, max_steps is num of steps before giving up
current = an initial assignment for csp
for i=1 to max_steps do
if current is a solution for csp
return current
var = a randomly chosen conflicted variable in csp
value = the value v for var that minimizes Conflicts
set var = value in current
return failure

f-iacobelli@neiu.edu (@neiu.edu) Al March 19, 2024

26/30

Local Search in CSPs
Example

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024 27/30

Local Search in CSPs
Example

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024 28/30

Local Search in CSPs
Example

f-iacobelli@neiu.edu (@neiu.edu) March 19, 2024 29/30

Median number of consistency checks over five runs

From Russel and Norvig

Problem Backtracking Fwd. Checking FC+MRV Min Conflicts
n-queens > 40,000K > 40,000K 817K 4K
USA states | > 1,000K 2K 60 64
Zebra 3,859K 35K 500 2K

f-iacobelli@neiu.edu (@neiu.edu) Al March 19, 2024

30/30

